Crown-ether-catalysed synthesis of amine borane and amine trideuterioborane adducts from $NaBH_4$ - $NaBD_4$ in ether

V. Kampel and A. Warshawsky

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100 (Israel) (Received August 16, 1993)

Abstract

Amine borane and amine trideuterioborane adducts have been obtained in good yield by the crown-ether-catalysed reaction of $R_3N \cdot HCl$ with NaBH₄ and NaBD₄ in ether. The absence of isotopic exchange in the reaction with NaBD₄ is demonstrated by IR and ¹¹B and ²H nuclear magnetic resonance spectra of Me₃N \cdot BD₃.

Key words: Boron; Hydride; Amine

1. Introduction

Amine boranes have wide application in organic chemistry as selective reduction and hydroborating agents [1]. The most used method of synthesis of amine boranes is based on the reaction of $NaBH_4$ with the appropriate amine hydrochloride in various aprotic solvents.

It is well known that NaBH₄ is insoluble in diethyl ether, and so amine boranes could not be prepared in this solvent by this method [2]. Only the ether-soluble LiBH₄ can be used in diethyl ether for preparing Me₃N \cdot BH₃ from Me₃N \cdot HCl [3]. Since it is known that reduction by NaBH₄ can be catalysed by crown ethers in hydrocarbon solvents [4], we attempted to use crown ethers to promote the formation of amine boranes by this reaction in ether.

We found that the reaction of $NaBH_4$ with $Me_3N \cdot$ HCl in boiling ether catalysed by 18-crown-6 afforded $Me_3N \cdot BH_3$ with a good yield:

$$Me_3N \cdot HCl + NaBH_4 \xrightarrow{18-crown-6} Me_3N \cdot BH_3$$

Under the same conditions, other amine boranes were prepared from the corresponding amine hydrochlorides (Table 1). The physical constants of the amine boranes were identical with those published previously [5].

We also attempted to apply this reaction to the synthesis of amine trideuterioboranes. The preparation of $Me_3N \cdot BD_3$ was first reported in 1963 [6] and was achieved by isotopic exchange of $Me_3N \cdot BH_3$ with deuterium in acidic D_2O . We have recently reported hydrogen-deuterium exchange reactions brought about by polymeric membranes and cation exchange resins [7]. We found that the reaction of NaBD₄ with $Me_3N \cdot HCl$ in ether at reflux is catalysed by 18-crown-6, affording $Me_3N \cdot BD_3$, as follows:

$$NaBD_4 + Me_3N \cdot HCl \xrightarrow{18-crown-6} Me_3N \cdot BD_3$$

No isotopic exchange occurred in this reaction, as shown by the IR and ¹¹B and ²H nuclear magnetic resonance (NMR) spectra of the product. The IR spectra of a solution of Me₃N · BD₃ in CCl₄ showed the gradual disappearance of the 2360 cm⁻¹ B-H bond (Fig. 1(a)) and the appearance of a strong broad line at a frequency of 1783 cm⁻¹ (Fig. 1(b)) characteristic of the boron-deuterium bond. ¹¹B NMR showed a multiplet of -8.92 ppm (broad, $\Delta \nu_0^{1/2} = 70$ Hz, CDCl₃) (Fig. 2) and ²H NMR showed one of -1.699 ppm (broad, $\Delta \nu_0^{1/2} = 15.4$ Hz, CDCl₃) (Fig. 3).

Several other amine hydrochlorides, including trimethylamine, pyridine, morpholine, N-methylmor-

Correspondence to: Professor A. Warshawsky.

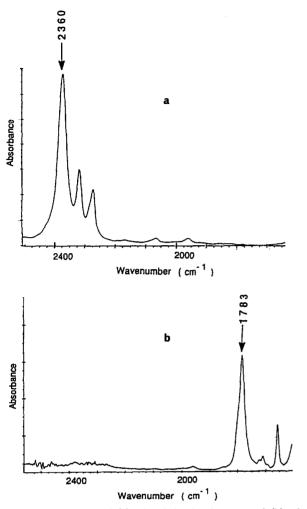


Fig. 1. IR spectra of (a) trimethylamine borane and (b) trimethylamine trideuterioborane in CCl_4 .

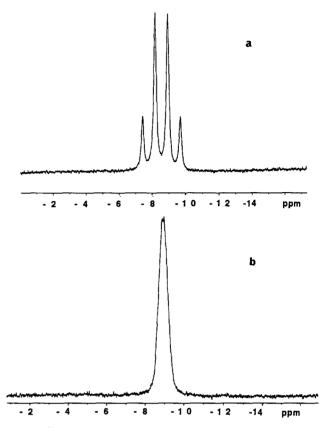


Fig. 2. ¹¹B NMR spectra of (a) trimethylamine borane and (b) trimethylamine trideuterioborane in $CDCl_3$.

pholine and isobutylamine were converted into the corresponding amine borane complexes with fair to good yields after crystallization. Thus this new approach provides a convenient method for synthesizing

Amine	Amineborane	Yield ^a (%)	M.p. ^b (°C)
Me ₃ N	Me ₃ N · BH ₃	80	94
C₅H ₅ N	$C_5H_5N \cdot BH_3$ CH3	63	-
√№−СН ₃	N·BH ₃	75	44–45 (Et ₂ O)
√ NH	Ø N BH₃	50	97 (Et ₂ O)
$CH_{3} - CH_{3} - NH_{2}$ $CH_{3} - CH_{3} - C$	CH_{3} $CH_{3} - C - NH_{2} \cdot BH_{3}$ $CH_{3} - CH_{3}$	70	97–99 (Et ₂ O-hexane)

TABLE 1. Melting points and yields for selected amine boranes syntheses

^a No attempt was made to optimize yields. ^b With solvent used for recrystallization.

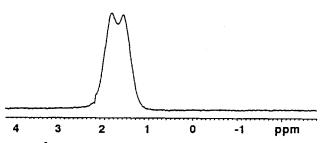


Fig. 3. ${}^{2}H$ NMR spectra of trimethylamine trideuterioborane in CDCl₃.

amine borane and amine trideuterioborane adducts from the readily available sodiumborohydride or sodiumborodeuteride and the relevant amine hydrochlorides.

2. Experimental details

NMR spectra were recorded on a Bruker AMX400 spectrometer. A Nicolet 510 Fouier transform IR spectrometer was used to record IR spectra in the range 4000–400 cm⁻¹. For the IR spectra of solutions a standard NaCl cell was used. Melting points were determined for samples in a capillary tube. The ether was distilled over LiAlH₄ under Ar prior to use.

2.1. Trimethylamine borane

A mixture of NaBH₄ (0.558 g, 14.7 mmol), Me₃N \cdot HCl (1.0 g, 10.4 mmol) and 18-crown-6 (0.1 g, 0.38 mmol) in ether (40 ml) was refluxed under Ar for 5 h.

The mixture was allowed to cool, and then the ether was evaporated and the residue sublimed under vacuum to give 0.61 g (80%) of $Me_3N \cdot BH_3$ (melting point (m.p.), 94°C).

2.2. Trimethylamine trideuterioborane

A mixture of NaBD₄ (0.426 g, 10 mmol), Me₃N · HCl (1.04 g, 11 mmol) and 18-crown-6 (0.1 g, 0.38 mmol) in ether (40 ml) was refluxed under Ar for 5 h. The work-up, as above, culminated in two sublimations under vacuum, giving 0.45 g (61%) of Me₃N · BD₃ (m.p., 94°C).

Acknowledgments

V.K. thanks the Ministry of Absorption for a research fellowship. Technical assistance by Mr. Daniel Feigelson is gratefully acknowledged.

References

- 1 R.O. Hutchins, K. Learn, B. Nazer and D. Pytlewski, Org. Prepr. Proc. Int., 16 (1984) 335.
- 2 C. Andres, M. Delgado and R. Pedrosa, Synth. Commun., 22 (6) (1992) 829.
- 3 G. Schaeffer and E. Anderson, J. Am. Chem. Soc., 71 (1949) 2143.
- 4 T. Matsuda and K. Koida, Bull. Chem. Soc. Jpn., 46 (1973) 2259.
- 5 C.F. Lane, Aldrichchimica Acta, 6 (3) (1973) 51.
- 6 R.E. Davies, A.E. Brown, R. Hopmann and C.I. Kibby, J. Am. Chem. Soc., 85 (1963) 487.
- 7 L. Bromberg, D. Muraviev and A. Warshawsky, J. Phys. Chem., 97 (1993) 967.